
AI6121: Computer Vision

Assignment 2

Stereo Vision

Ron Kow Kheng Hui

ID: G1903451J

1 November 2021

School of Computer Science and Engineering

Nanyang Technological University

Contents

1 Introduction 1

2 Definitions and Methods 1

2.1 Relationship Between Depth and Disparity . 1

2.2 Computation of Disparity and Disparity Map . 2

2.3 Window-Based Method . 2

3 Implementation 3

3.1 Four-Step Taxonomy . 3

3.2 Source Code . 4

4 Experiments and Observations 8

4.1 Input Images . 8

4.2 Disparity Maps . 8

4.3 Computation Time . 14

5 Disparity Map Refinement 14

5.1 Factors Affecting Disparity Computation . 14

5.2 Refinement Methods Implemented . 14

6 Conclusion 15

References 15

1 Introduction

In this assignment, we study a pixel matching method used to estimate the 3D depth of objects

and things captured in 2D images. A key parameter in the method is disparity, which is inversely

proportional to the 3D depth. Our goal is to develop an algorithm to compute a disparity map of the

captured scene. The disparity map shows the different levels of 3D depth. This report is organized as

follows:

� In Section 2 (Assignment Task 1), we describe the method of computing the disparity between two

corresponding pixels in a pair of rectified images of the same scene captured from two different

viewpoints.

� In Section 3 (Assignment Task 2), we present our implementation of an algorithm to compute

disparity and to generate the disparity map for a pair of rectified images.

� In Section 4 (Assignment Tasks 3 and 4), we present the disparity maps obtained by applying

our algorithm to the two given pairs of images. We compare and discuss the results for different

parameter values. We also present the improved disparity maps obtained after applying a median

filter.

� In Section 5 (Assignment Task 4), we discuss the factors affecting the accuracy of disparity map

computation and some possible improvements to our algorithm.

� Lastly, in Section 6, we summarize and conclude the work presented in this report.

2 Definitions and Methods

In this section, we describe the method of computing the disparity map for a pair of rectified images

of the same scene captured from two different viewpoints.

2.1 Relationship Between Depth and Disparity

Stereo matching refers to the process of capturing two or more images of the same scene from different

viewpoints (i.e., camera positions), building a 3D model of the scene by matching pixels in the images,

and computing 3D depths of points in the scene from their 2D positions in the images [3].

When two images of the same scene are captured from two different viewpoints, a particular point

in the scene will be at different positions in the images. If there is a horizontal translation in position,

the number of pixels translated horizontally is called disparity. It can be shown by simple geometry

that the disparity for a point in the scene is inversely proportional to its 3D depth (i.e., perpendicular

distance from the line joining the two cameras to the point), as shown by the following equation:

Z =
fT

d
,

where Z is the 3D depth, f is the focal length of the cameras measured in pixels, T is the distance

between the two cameras and d is the disparity. Thus, by computing the disparity associated with a

point in the scene, we can estimate the 3D depth of the point.

1

2.2 Computation of Disparity and Disparity Map

The fundamental problem in stereo matching is that of pixel searching and matching: For two images

of the same scene, how do we match correctly a pixel in one image with its corresponding pixel in the

other image? To solve this problem, for a given pixel in the left (or right) image, we compute a range

of possible candidate pixels in the right (or left) image. Then we select the candidate pixel that is the

most likely match based on a cost criterion.

The first step is to rectify the two images so that the range of possible locations all lie on a horizontal

line, called the epipolar line, passing through the left image and right image. In other words, a pixel in

one image projects to a pixel on the epipolar line in the other image. The search space is now reduced

to the epipolar line. For a pixel at position (x0, y0) in the left image, if the matching pixel in the

right image is at position (x1, y0), then the disparity is the horizontal distance |x0 − x1|. If we plot

the disparities for all points in the scene, we obtain a disparity map, which is an image showing the

different levels of 3D depth in the scene.

Note that disparity for points at infinity is 0, because the pixel shift in the images will be negligible.

In the disparity map, points at infinity will be black. For points very close to the cameras, the pixel

shift will be large. In the disparity map, points close to the camera will be light-colored.

2.3 Window-Based Method

We now describe a local method (also called window-based method) to compute disparity, so-called

because disparity computation depends only on pixel intensity values within a square or rectangular

window (also called a support window).

If an image point matches with a point in another image of the same scene, their pixel intensities

should be the same. In other words, the difference in intensity values will be zero. However, for a

given point in one image, there are likely to be multiple points in the other image with the same

pixel intensity. Furthermore, there could be some differences in colors between the two images for two

matching points. Thus, matching individual pixel intensities will not produce accurate disparity maps.

Instead, we compare two square or rectangular regions (i.e., the support windows) of the same size in

which the pixel of interest lies at the center of the window. Then we compute a cost measure between

the two windows. The simplest cost measure is to compute an aggregate of the difference in intensity

values between corresponding pixels in the two windows. If two windows match, the distribution of

pixel intensities between them should be identical. The best matching pair of windows is the one with

the least cost between them.

To illustrate, Figure 1 shows two rectified images with a red epipolar line running through them.

The blue windows in the left and right images are at the same position along the epipolar line. However

the windows do not match. To find a target window in the right image that matches with the blue

window in the left image, we translate the target window in the right image one pixel at a time in

the negative direction. For each target window, we compute the cost. In practice, we use a maximum

disparity parameter to limit the number of pixels by which we translate the target window. This

parameter gives the number of candidate windows.

2

(a)

(b)

Figure 1: (a) Same x-coordinate positions in left and right images showing different parts of the scene,
(b) Translating a window (green square) pixel by pixel in the negative direction from the initial position
(blue square) along the epipolar line

3 Implementation

In this section, we present our implementation of the window-based method to compute disparity and

the disparity map for a pair of rectified images.

3.1 Four-Step Taxonomy

Scharstein and Szeliski [2] proposed a general taxonomy for stereo matching algorithms consisting of

the following four steps:

1. Matching cost computation

2. Cost aggregation

3. Disparity computation and optimization

4. Disparity refinement

The authors referred to these four steps as “building blocks” from which an algorithm can be

constructed. The sequence of steps depends on the design of the algorithm. Steps may also be combined

or omitted. With reference to the four-step process, the following is the window-based (using a square

window) algorithm we developed:

1. Matching cost computation: We use absolute difference (AD) of intensities to compute the

cost at a given point and disparity. This is defined as:

AD(x, y, d) = |IL(u, v)− IR(u− d, v)|

where d is the disparity, u and v are coordinates within the support window, and IL and IR are

the left and right intensity values.

3

2. Cost aggregation: We use a fixed-sized w × w square support window. The aggregate cost C

at a given point and disparity is computed by summing all the costs over the support window:

C(x, y, d) =
∑

(u,v)∈(x,y)

AD(x, y, d)

3. Disparity computation and optimization: We select the disparity ds associated with the

minimum aggregate cost from the set of candidate aggregate costs (each associated with one

candidate window):

ds(x, y) = arg min
d∈D

C(x, y, d)

The number of candidate windows is D, which is the maximum disparity parameter.

4. Disparity refinement: The disparity map is plotted using disparities associated with least

aggregate costs. Along the four borders (each of width
w

2
) on the disparity map (where our

algorithm is unable to compute the disparities), we use the disparities of pixels adjacent to the

borders. For further refinement, we also apply a median filter to the disparity map.

3.2 Source Code

We now present our Python source code. The function load image loads a pair of left and right images

from the directory and converts them to a Numpy array (using OpenCV).

4

The function compute cost computes the aggregate cost for each support window and stores all

the costs for the entire image in a Numpy array.

The function plot image plots a pair of images and save the plots to a file.

5

The function plot disparity map plots a disparity map and if specified, the disparity map with

median filter or Gaussian filter applied. It then saves the plots to a file.

We provide options to use OpenCV methods medianBlur and GaussianBlur with a 5× 5 kernel

window. The median filter medianBlur replaces the intensity of the pixel at the center of the window

with the median intensity value of all the pixels in the window. The Gaussian filter GaussianBlur

estimates pixel values by using neighboring pixels and weights defined by a Gaussian distribution.

6

The function compute disparity calls the other functions to compute the disparity map. It selects

the minimum cost from the set of aggregate costs and processes the disparities along the four borders

of the disparity map.

Figure 2 shows the effect of processing the disparities along the four borders of the disparity map

in the function compute disparity. Before processing, the disparity map is surrounded by a black

border whose width is half of the support window width. Our algorithm changes the values of the

pixels along the four borders to the values of the pixels adjacent to the borders.

7

(a) (b)

Figure 2: Disparity maps for a small test image: (a) before processing the borders, (b) after processing
the borders

4 Experiments and Observations

In this section, we present the disparity maps for different parameter values in our algorithm (with and

without applying a median filter) and compare the results.

4.1 Input Images

We apply our algorithm to the following pairs of rectified images shown in Figure 3. For both pairs

of images, it is clear that the each point in the left image is shifted a number of pixels in the negative

direction in the right image. Thus, our algorithm only needs to move the support window in the same

direction for both pairs of images.

4.2 Disparity Maps

Figures 4, 5, 6 and 7 show the disparity maps obtained with and without applying a median filter for

different values of the parameters maximum disparity and window size. We experimented with two

parameters: maximum disparity d and square window size w × w. For d, we obtained disparity maps

for d = 10, 15, 20 and for window sizes 8× 8, 12× 12 and 16× 16. The following are our observations.

Best results: For the corridor images, the best results are obtained when we set the maximum

disparity to 15 (or 20) and window size to 16 × 16. For the triclopsi2 images, the best results are

obtained when we set the maximum disparity to 20 and window size to 16× 16.

Analysis of corridor disparity maps: The regions on the image where the algorithm has

difficulty estimating the disparities are those where pixel intensities are relatively uniform (such as the

ceiling and the black walls facing the camera on the left and right foreground). Increasing the window

size from 8× 8 to 16× 16 dramatically improves the results in these regions.

Analysis of triclopsi2 disparity maps: For the walking path in the image, the algorithm is

unable to estimate the disparities accurately because of its uniform pixel intensities. Likewise, the sky

at the top right corner of the image also has poor results. However, excellent results (Figure 7(c)) are

obtained for the patch of bushes to the left of the walking path, because of the uneven pixel intensities.

8

Effect of median filter: When the OpenCV median filter was applied to each disparity map,

noise and small and isolated patches of wrongly estimated disparities are reduced.

(a)

(b)

Figure 3: Rectified input images: (a) corridor, (b) triclopsi2

9

(a)

(b)

(c)

Figure 4: Disparity maps for corridor showing improved results for larger window sizes w×w for the
same maximum disparity parameter d = 15: (a) 8 × 8, (b) 12 × 12, (c) 16 × 16 (Median filter applied
to the disparity maps on the right.)

10

(a)

(b)

(c)

Figure 5: Disparity maps for triclopsi2 showing improved results for larger window sizes w×w for the
same maximum disparity parameter d = 15: (a) 8 × 8, (b) 12 × 12, (c) 16 × 16 (Median filter applied
to the disparity maps on the right.)

11

(a)

(b)

(c)

Figure 6: Disparity maps for corridor showing improved results for larger maximum disparity param-
eter d = 15 for the same window size 16 × 16. Identical results are obtained for d = 15 and d = 20,
indicating that the greatest disparity between the images is no greater than 15 pixels: (a) d = 10, (b)
d = 15, (c) d = 20 (Median filter applied to the disparity maps on the right.)

12

(a)

(b)

(c)

Figure 7: Disparity maps for triclopsi2 showing improved results for larger maximum disparity pa-
rameter d for the same window size 16× 16: (a) d = 10, (b) d = 15, (c) d = 20 (Median filter applied
to the disparity maps on the right.)

13

4.3 Computation Time

Table 1 shows the computation time for different parameter values (maximum disparity d, window size

w × w).

corridor triclopsi2

d = 15, w = 8 125.6 150.1

d = 15, w = 12 247.9 304.6

d = 15, w = 16 405.1 489.0

d = 10, w = 16 294.6 400.0

d = 20, w = 16 551.2 676.5

Table 1: Computation time in seconds with median filter applied

5 Disparity Map Refinement

In this section, we discuss the factors that determine the accuracy of disparity computation and suggest

possible improvements to our algorithm.

5.1 Factors Affecting Disparity Computation

Our results show that the choice of the parameter values of maximum disparity and window size is

important. The ideal maximum disparity value can be estimated by inspecting the pair of images.

Estimating the ideal window size is much harder. The window must be large enough to contain

sufficient texture (i.e., variations in pixel intensities). But if the window is too large, it will straddle

depth discontinuities and this may affect the accuracy of the disparity map. Solutions to overcome

the problem of window size selection include using adaptive window sizes and pixel-weighted windows

[3]. In regions on the image where texture is lacking, such as dark colored walls and clear skies, good

estimation of disparities is difficult.

5.2 Refinement Methods Implemented

Stereo matching is a widely research problem. Many different methods for each step of the taxonomy

have been proposed for window-based methods [1]. We limit our discussion to Step 4. In Step 4, the

disparity map obtained can be improved by further processing. In Section 3, we describe two methods

we use. First, we fill the borders of the disparity map by using the disparity values of the pixels

adjacent to the borders. Second, we apply a median filter to the disparity map. The median filter

helps to reduce noise or small, isolated patches of wrongly estimated disparities. Another popular filter

used by researchers is the Gaussian filter. The Gaussian filter estimates disparities by using disparity

values of neighboring pixels and weights defined by a Gaussian distribution. Figure 8 shows the original

14

disparity map and the disparity maps obtained after applying OpenCV’s median filter and Gaussian

filter. The median filter produces better results.

(a) (b) (c)

Figure 8: Disparity maps for corridor showing the results of applying a filter: (a) original disparity
map (no filters), (b) with OpenCV’s median filter, (c) with OpenCV’s Gaussian filter

6 Conclusion

We now conclude our report with a summary of the work presented and the results obtained.

We explained the method of using support windows to compute disparities between corresponding

points in rectified left and right images. We implemented an algorithm to compute the disparity of two

given pairs of rectified images and plot their disparity maps. We experimented with different values of

two parameters, maximum disparity and window size, and compared their results.

We presented the disparity maps with and without applying a median filter. For the given pairs of

images, the results improved as the maximum disparity parameter value is increased, up to a certain

limit. Increasing the window size also helped in improving the accuracy of disparity maps. From our

results, we noted that regions on the image with uniform pixel intensities yield poor results, while

regions showing clear variations in pixel intensities produce excellent results.

Lastly, we discussed the factors affecting the accuracy of disparity estimation and some possible

improvements to our algorithm.

References

[1] Rostam Affendi Hamzah and Haidi Ibrahim. Literature survey on stereo vision disparity map

algorithms. Journal of Sensors, 2016, 2016. 14

[2] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. International journal of computer vision, 47(1):7–42, 2002. 3

[3] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer Science & Business

Media, 2010. 1, 14

15

	Introduction
	Definitions and Methods
	Relationship Between Depth and Disparity
	Computation of Disparity and Disparity Map
	Window-Based Method

	Implementation
	Four-Step Taxonomy
	Source Code

	Experiments and Observations
	Input Images
	Disparity Maps
	Computation Time

	Disparity Map Refinement
	Factors Affecting Disparity Computation
	Refinement Methods Implemented

	Conclusion
	References

