
Nanyang Technological University

AI6102:

Machine Learning Methodologies & Applications

Term Paper

Kaggle Competition (Knowledge)

Real or Not? NLP with Disaster Tweets

Ron Kow Kheng Hui

Brandon Chua Shao Jie

School of Computer Science and Engineering

November 30, 2020

Abstract

Microblogging is a popular form of communication in social networking. Despite its informal

form, microblogging websites such as Twitter and Weibo are also an influential medium for news

reporting. Breaking news of random incidents are often disseminated on Twitter by the general

public who are the first to witness these incidents. News reporters routinely monitor microblogs

for any news-worthy incidents.

This project is a Kaggle challenge entitled “Real or Not? NLP with Disaster Tweets”. Given

a set of tweets, most of which contain words related to disasters (e.g., “earthquake”, “terrorism”,

“emergency plan”), the objective is to build a model to determine if a tweet is about an actual

disaster. Given a tweet containing words related to disasters, the model classifies the tweet into

one of two classes: a disaster tweet, or not a disaster tweet.

We selected a set of word tokens from the raw data as features and experimented with different

classical and ensemble classification algorithms. We achieved the best performance with a gradient

tree boosting model, trained using the XGBoost library. The model achieved a F1 score of 79.5%

on the official test dataset in Kaggle.

i

Table of Contents

Abstract i

List of Tables iii

List of Figures iv

1 Introduction 1

1.1 Problem Statement . 2

1.2 Organization of the Report . 2

2 Proposed Solution and Model Development 3

2.1 Proposed Solution . 3

2.2 Raw Data Analysis . 4

2.3 Bag of Words . 6

2.4 Text Preprocessing . 7

2.5 Feature Selection . 8

2.6 Feature Values . 9

2.7 Test Dataset Preprocessing and Prediction . 9

2.8 Performance Metrics . 9

2.9 Challenges . 10

3 Experiments and Results 11

3.1 Algorithms . 11

3.1.1 Logistic Regression . 11

3.1.2 Naive Bayes Bernoulli . 12

3.1.3 Naive Bayes Multinomial . 12

ii

3.1.4 K Nearest Neighbors . 12

3.1.5 Support Vector Machine (Linear) . 12

3.1.6 Decision Tree . 13

3.1.7 Random Forest . 13

3.1.8 AdaBoost . 13

3.1.9 Gradient Tree Boosting . 14

3.2 Cross-validation Results . 14

3.2.1 Conclusions . 15

3.3 XGBoost . 15

3.3.1 Model Hyperparameters . 16

3.3.2 Experiments . 16

3.3.3 Final Model . 18

3.4 Leaderboard Result and Conclusions . 19

4 Conclusion 20

4.1 Summary . 20

4.2 Lessons Learned . 21

4.3 Kaggle Competition Page and Source Files . 21

4.4 Allocation of Work . 21

Bibliography 21

Appendices 23

A List of 222 Keyword Tokens . 23

B List of Top 100 Hashtags and Their Frequencies (Training) 25

C List of Top 100 Usernames and Their Frequencies (Training) 26

D List of Top 100 Other Tokens and Their Frequencies (Training) 27

iii

List of Tables

2.1 Raw data statistics: target labels and missing values 6

2.2 Raw data statistics: unique keywords, hashtags and usernames 6

3.1 Cross-validation F1 results for all algorithms . 14

3.2 XGBoost training results . 19

iv

List of Figures

3.1 Plot of F1 score vs n estimators . 17

3.2 Plot of F1 score vs max depth . 18

3.3 Screenshot of the Kaggle leaderboard (November 30, 2020) 19

v

Chapter 1

Introduction

Popular microblogging websites such as Twitter [2] and Weibo [3] provide a platform for users to

communicate thoughts, ideas, and real life events in an informal and accessible manner. Microblog-

ging is not only a popular form of social networking. It has also become an influential medium for

news reporting.

The latest news are often released on official microblogs before the full detailed reports are

published on official websites. These may be breaking news released by news media companies (i.e.,

newspapers, magazines, television cable news, etc.), or important news released by organizations

(i.e., government agencies, corporations, etc.) on their official microblogging sites. For example,

professional football clubs in the UK often announce signings of new players on Twitter before an

official statement is released. We have also seen the trend in recent years for politicians to use

Twitter to announce random policies that may interest their supporters.

Very often, the general public are the first to disseminate news about random incidents happen-

ing across the world. Within minutes of a news-worthy incident occurring, such as a road accident

or a sighting of a wild animal in an urban area, for instance, people on the scene of the incident

would post on Twitter or Weibo what they just witnessed. These posts are often accompanied by

videos taken by mobile phones.

Thus, microblogs have become an important component of news reporting and journalism.

News reporters routinely monitor microblogs for any news-worthy incidents. In most parts of the

world, Twitter is the most widely used microblogging service. Every reporter or journalist today

is expected to tweet regularly as part of their job, in order to build a network with their readers

and also to report breaking news and news updates, or simply to retweet news from other twitter

users.

1

Many natural and man-made disasters, such as road accidents, earthquakes and sudden explo-

sions, occur without warning. A twitter crawler that is able to detect the latest tweets on such

disasters would be a useful tool for news media companies on the hunt for breaking news.

This project is a Kaggle [1] challenge entitled “Real or Not? NLP with Disaster Tweets”. A

set of raw tweets is provided. Most of these tweets contain words related to disasters such as

“earthquake”, “terrorism”, or “emergency plan”. Many of these tweets are about actual disasters.

But some of the tweets use words related to disasters in a different context. For example, a tweet

could be about a disaster movie such as Titanic. The objective of this challenge is to build a model

which is able to determine if a tweet relates to an actual disaster or not. This is a supervised

learning text classification problem.

1.1 Problem Statement

Given a labeled training dataset of raw tweets containing words related to disasters, our objective

is to build a model that is able to classify a tweet into one of two classes: a disaster tweet (class

label 1), or not a disaster tweet (class label 0).

1.2 Organization of the Report

The rest of this report is organized into three chapters.

� In Chapter 2, we describe our solution and modelling process, and discuss the challenges of

this problem.

� In Chapter 3, we describe the algorithms we use in our experiments and present the results.

� Chapter 4 concludes the report with an overall summary and the lessons we have learned.

2

Chapter 2

Proposed Solution and Model

Development

This chapter describes the raw data and our proposed solution for developing the classification

model. We also discuss the challenges this problem poses.

2.1 Proposed Solution

In machine learning, the performance of the trained model is very much affected by three factors:

the data, the algorithm, and the complexity of the problem. We need to consider the size of the

dataset, the quality of the data and how we process the data. This in turn affects the choice of

learning algorithm or method. If deep learning methods are to be used, then the choice of the neural

network architecture is crucial. Some complex problems such as image classification or machine

translation work better with neural networks. For simple classification problems, a simple linear

model such as Logistic Regression could perform very well.

For this project, the training dataset of 7613 data instances is relatively small. The problem

of text classification is not complex. For these reasons, we will not use deep learning methods.

We will only experiment with traditional machine learning algorithms, including state of the art

ensemble algorithms such as gradient tree boosting.

Our proposed solution is outlined in the following steps:

1. Raw data analysis. This involves understanding the raw data and its inherent problems

through extracting some statistics. We describe our analysis in Section 2.2.

3

2. Text preprocessing. This includes data cleaning, handling of missing values, and tokeniza-

tion. We describe this process in Section 2.4

3. Feature engineering. We will select a bag of words as the set of features. This is a set of

selected text tokens which we believe are important features. The bag of words representation

is explained in Section 2.3. We will justify our selection of features in Section 2.5.

4. Feature values. After selecting the features, we will prepare the training and test datasets

of feature values. As each data instance is a short text string, we will use one-hot encoding

for the feature values. This is explained in Section 2.6

5. Experiments with algorithms. We will train different models using different basic and

ensemble algorithms. As the training dataset is quite small, we will not split it to produce

a validation set. Each trained model will be evaluated using five-fold cross-validation. The

best performing model will be our baseline model. We describe our experiments and present

our results in Sections 3.1 and 3.2.

6. Experiments with XGBoost. We will experiment with gradient boosted trees from the

XGBoost library [5] [4]. We will tune the algorithm to obtain the best possible model. As

before, we will use five-fold cross-validation to evaluate our models. We present our results

in Section 3.3.

7. Submission of test data predictions to Kaggle. Finally, we will make predictions on

the test dataset using our best model and submit our predictions to Kaggle to see the test

results. We present our test score on the Kaggle leaderboard in Section 3.3.3.

2.2 Raw Data Analysis

The training dataset from Kaggle consists of 7613 raw tweets, most of which contain words related

to disasters. There are five columns in the dataset, for these five fields: id, keyword, location, text,

and target.

The entire string of a raw tweet is stored in the text field. Twitter currently limits the length

of each tweet to 140 characters. Many of the raw tweets contain URLs, hashtags prefixed by the

symbol (e.g., #CNN, #interracial, #GlobalWarming), and usernames prefixed by the @ symbol

(e.g., @foxandfriends, @1233newcastle, @BarackObama).

Hashtags are topic tags created by users. By tagging one’s tweet with a hashtag, users are able

connect their tweets with other tweets containing the same hashtag. A user can retrieve all tweets

containing a common hashtag by clicking on the hashtag. Usernames prefixed by the @ symbol are

4

used to mention or reply to another user.

Keywords are words related to disasters. For each data instance, the keyword field contains a

single keyword or a keyphrase found in the raw tweet. Keyphrases are stored as a single string, with

“%20” replacing the space between two words (e.g., emergency%20services, mass%20murder). A

small number of data instances have no keyword.

The location field contains the name of a location, usually a country or a city, or multiple

names (e.g., Toronto, Canada; Toronto, Ontario). For some data instances, the location field

contains nonsensical text (e.g., Under Ya Skin; uncanny valley). A significant proportion of data

instances have no location information.

Each training data instance is labeled as 1 (the tweet is about an actual disaster) or 0 (the

tweet is not about an actual disaster). This class label is stored in the target field. We will call

a tweet in class 1 a disaster tweet and a tweet in class 0 a non-disaster tweet. The following are

examples of two training data instances, one from each class:

id: 48

keyword: ablaze

location: Birmingham

text: @bbcmtd Wholesale Markets ablaze http://t.co/lHYXEOHY6C

target: 0

id: 50

keyword: ablaze

location: AFRICA

text: #AFRICANBAZE: Breaking news:Nigeria flag set ablaze in Aba.

http://t.co/2nndBGwyEi

target: 1

The test dataset from Kaggle has a similar structure, except that there are no target labels.

There are 3263 raw tweets in the test dataset, most of which contain words related to disasters.

We note that some data instances have missing values for the keyword and location fields. Table

2.1 shows some statistics for the training and test datasets. Table 2.2 shows the number of unique

keywords, hashtags and usernames in the raw tweets.

5

Number of data instances

Statistic Training Test

All data instances 7613 3263

Positive class (label 1) 3271 (43.0%) -

Negative class (label 0) 4342 (57.0%) -

No keyword value 61 (0.8%) 26 (0.8%)

No location value 2534 (33.3%) 1106 (33.9%)

Table 2.1: Raw data statistics: target labels and missing values

Statistic Training Test

Number of unique keywords 222 222

Number of unique hashtags 1889 1109

Number of unique usernames 2317 1141

Table 2.2: Raw data statistics: unique keywords, hashtags and usernames

The proportion of data instances in each class is quite balanced. We would need to deal with

the missing keyword and location values when we preprocess the data.

2.3 Bag of Words

In Natural Language Processing, text data needs to be tokenized and word tokens are often trans-

formed into features. A feature could be a word, or a phrase, or a string of characters. For a

dataset of millions of documents, there would be a very large number of unique text tokens. Many

of these tokens are likely to be noise.

The goal of feature engineering for text data is to extract a set of tokens which are potentially

important features. This will be the set of features to model the information in each data instance.

This form of data representation is known as the bag of words model.

Despite the name, many of the tokens might not be valid words. It is often useful to stem all

words during text preprocessing, which will truncate a word into its most basic form (e.g., prettier

becomes pretti, passenger becomes passen). The stemming algorithm may also replace some

characters at the end of a word (e.g., pretty becomes pretti). A token in the bag of words could

also be a string of symbols, such as a URL. Thus we will refer to a token as a term or a feature,

rather than a word.

6

2.4 Text Preprocessing

We first preprocess the training data before selecting the set of features. The test data will be

preprocessed in a similar way when we prepare the test dataset for predictions.

For the raw tweets in the text field, we preprocess the text as follows:

� tokenize all text

� convert all characters to lower case

� remove stop words

� remove all punctuation except # and @, which represent hashtags and usernames respectively

� remove all numbers, but retain words containing numbers, which could be influential (e.g.,

mh370, the flight number of a plane that had crashed)

� stem all words

� remove all single-character terms

For the words in the keyword field, we preprocess the text as follows:

� tokenize all text

� convert all characters to lower case

� remove all punctuation

� remove all numbers

� append kw to each keyword

There are 222 unique keyword tokens. Some of them are similar words in different forms, such

as bomb, bomb, and bombing. We could stem the keywords in order to transform different forms

into the same token and reduce the number of keyword tokens. But our experiments show that

retaining the different forms results in better performance. The list of keyword tokens is shown in

Appendix A.

In the training dataset, 61 data instances have missing keyword values. We fill in these keyword

fields manually with one of the 222 existing keyword tokens, if the words are found in the raw text.

For 16 of these instances whose raw text do not contain any disaster keywords, we fill the keyword

field with na.

We do the same for the 26 data instances with missing keyword values in the test dataset. We

fill 9 of the 26 instances with na in the keyword field.

7

About one-third of the data instances in the training and test datasets have missing location

values. A significant number of the remaining instances have nonsensical location values. Therefore,

we will not select any features from this field. The entire location column is deleted.

2.5 Feature Selection

After preprocessing of the training data, the complete set of tokens in the keyword and text fields

consist of:

� 222 keywords

� 1889 hashtags prefixed by #

� 2317 usernames prefixed by @

� 15,610 other tokens, including URLS with no punctuation (e.g., httpstcodehmym5lpk)

To have an idea of the nature of hashtags, usernames, and other tokens with high frequencies,

we generate the top 100 lists of these tokens. These lists are shown in Appendices B, C, and D.

We believe that the hashtags will be important features. A tweet containing hashtags such

as #earthquake or #fukushima is likely to be about an actual disaster. Hashtags of news media

companies such as #cnn and #bbc are also likely to be found in tweets about actual disasters.

Among the most frequently occurring usernames, there are celebrity usernames such as

@jimmyfallon and @barackobama. Tweets containing such links are not likely to be disaster tweets.

Likewise, we expect usernames of companies like @ebay and @manutd to be found in non-disaster

tweets. However, we would expect disaster tweets to contain links to news media companies, such

as @reuter and @usatoday.

The remaining tokens are a mix of disaster words and general words. Since all the keyword

tokens are taken from the tweet, there is likely to be correlation between a keyword token and its

corresponding text tokens.

We select a preliminary bag of words according to the following criteria:

� All keyword tokens

� All hashtag tokens with a minimum frequency of 2

� All username tokens with a minimum frequency of 2

� All remaining tokens with a minimum frequency of 4

Using this criteria, the resulting bag of words contain a total of 3264 features.

8

2.6 Feature Values

The selected bag of words is a set of categorical features which must be represented by a numerical

vector. In other words, a score, or a weight, must be assigned to each feature. In general, there are

three choices of weights for text features:

� Binary values (i.e., one-hot encoding)

� tf weights (term frequency in each document, or data instance)

� tf-idf weights (term frequency-inverse document frequency)

tf and tf-idf weights are useful for longer documents in which a term may occur multiple times

in each document. tf-idf gives more weight to terms that occur in fewer documents. For very short

documents, binary values are suitable.

A document in our dataset is a single tweet, which is no more than 140 characters. After

preprocessing, the length of tweet will be shorter. Therefore we use one-hot encoding to transform

the bag of words into a vector of length 3624 for each data instance. The data is very sparse, that

is, in each vector, only a very small number of entries will have the value 1.

2.7 Test Dataset Preprocessing and Prediction

When we have selected the best model, we use it to predict the unknown classes in the test dataset.

Before doing that, we need to preprocess the test data in the same way as the training data. Each

test instance will be represented by the same set of features as the training data and one-hot

encoded in the same way. After we predict the classes for all 3263 test instances, we upload our

predictions to Kaggle to see our results.

2.8 Performance Metrics

Kaggle evaluates the performance using the F1 metric, defined by:

F1 = 2× Precision× Recall

Precision + Recall

where Precision is the fraction of all predicted positive instances that are predicted correctly:

Precision =
of true positives

of true positives + # of false positives

9

and Recall is the fraction of all positive instances in the dataset that are predicted correctly:

Recall =
of true positives

of true positives + # of false negatives

During training, we also use the F1 metric to evaluate each iteration in cross validation.

2.9 Challenges

The biggest challenge for text data is feature selection: how do we determine the best set of tokens

as features? How do we measure the relevance or importance of a feature?

For this project, we have relied on raw data analysis and intuition to select a preliminary set

of features. When we train our models, we can examine the learned parameters to see if there are

any features with little influence and may be discarded. Some algorithm implementations provide

statistics of the trained model. For example, in tree models, statistics on the number of internal

nodes for each feature give an indication of the importance of the feature.

Another challenge is tuning the model. It is not easy finding the optimal set of hyperparameters,

especially for complex algorithms with many hyperparameters. One solution is to use the grid

search function provided in scikit-learn (sklearn.model selection.GridSearchCV). For complex

algorithms that are slow to train, this can be computationally costly.

10

Chapter 3

Experiments and Results

3.1 Algorithms

We train our training dataset of 3624 features using these algorithms:

� Logistic Regression

� Naive Bayes (Bernoulli)

� Naive Bayes (Multinomial)

� K Nearest Neighbors

� Support Vector Machine (Linear)

� Decision Tree

� Random Forest

� AdaBoost

� Gradient Tree Boosting

We use five-fold cross validation and the F1 metric for evaluation. The following sections

describe the hyperparameters we have adjusted for each algorithm to give the best result. Any

other hyperparameters that are not mentioned are the default values in scikit-learn.

3.1.1 Logistic Regression

LogisticRegression(C=0.3, max iter=100)

C is the regularization parameter which is the inverse of regularization strength. max iter is

the maximum number of iterations for the algorithm to converge.

11

3.1.2 Naive Bayes Bernoulli

BernoulliNB(alpha=1.5)

The Bernoulli Naive Bayes classifier is suitable for categorical features whose values are binary.

alpha is the smoothing parameter.

3.1.3 Naive Bayes Multinomial

MultinomialNB(alpha=35)

The Multinomial Naive Bayes classifier is suitable for categorical features whose values are

counts, such as term frequencies of documents. alpha is the smoothing parameter.

3.1.4 K Nearest Neighbors

KNeighborsClassifier(n neighbors=5, weights=‘uniform’, algorithm=‘auto’)

n neighbors is the number of neighbors to use. Using a larger number of neighbors will reduce

the effects of noise but in exchange, the classification boundaries are less defined. weights is

the type of function to use for prediction. Using ‘uniform’ for weights means that all points in

the neighborhood are weighted equally. The other option is to use ‘distance’, which means that

neighbors closer to a data point have more influence compared to those further away. Algorithm

refers to the algorithm used for calculating the nearest neighbor. Using ‘auto’ means it will select

the most fitting algorithm based on the training data used to train the model.

3.1.5 Support Vector Machine (Linear)

LinearSVC(C=0.01, loss=’squared hinge’, max iter=1000)

C is the regularization parameter which is the inverse of regularization strength. loss is the loss

function used. hinge is the standard SVM loss, while squared hinge is the square of hinge loss.

max iter is the maximum number of iterations to run. This is important since there will be cases

when the algorithm does not converge. By setting a maximum number of iterations, the algorithm

will stop training whether it has converged or not.

12

3.1.6 Decision Tree

DecisionTreeClassifier(max depth=None, min samples split=2, min samples leaf=1,

max features = None)

Decision trees are a non-parametric learning method. max depth is the maximum depth of the

tree. Using ‘None’ means the tree will keep growing until all leaves contain less samples than the

number set by min samples split or until all leaves are pure. min samples split is the minimum

number of samples required before splitting is allowed. min sample leaf is the minimum number

of samples left at a node. Splitting will only be considered if there is a minimum number of samples

in each of the left and right branches. max features is the number of features to consider for the

best split. Using ‘none’ means that the total number of all features will be used.

3.1.7 Random Forest

RandomForestClassifier(n estimators=500, max depth=None, min samples split=2,

min samples leaf=1, max features=‘auto’)

Random Forest is an ensemble classifier that uses a combination of many decision trees. Each

tree is trained by randomly sampling a subset of features.

The two most important parameters are n estimators and max features. n estimators sets

the total number of trees. Generally, a larger number of trees gives better results but it will

take longer to train. max features is the number of features to consider when splitting a node.

The lower it is, the higher the reduction of variance, but also the greater the increase in bias.

max depth, min samples split, min samples leaf, and max features are similar to the corre-

sponding parameters for the Decision Tree algorithm. Setting ’auto’ for max features means that

max features is the square root of the total number of training features.

3.1.8 AdaBoost

AdaBoostClassifier(base estimator=None, n estimators=50, learning rate=1)

AdaBoost is an ensemble boosting classifier. It works by first fitting a classifier on the dataset.

It then proceeds to fit additional copies of the classifier on the same dataset, while adaptively

adjusting the weights assigned to misclassified instances so that the subsequent classifier focuses

more on the misclassified observations.

The two most important parameters are n estimators and the choice of the base estimator.

base estimator is the base estimator from which the ensemble is built. Setting ‘none’ means using

13

the default DecisionTreeClassifier(max depth=1). n estimators is the maximum number of

estimators at which boosting is terminated. learning rate decreases the contribution of each

classifier by the value set. There is a trade-off between learning rate and n estimators.

3.1.9 Gradient Tree Boosting

GradientBoostingClassifier(n estimators=50, learning rate=1, min samples split=2,

min samples leaf=1, max depth=3, max features=’None’)

This is the scikit-learn implementation of gradient tree boosting. The two most important

parameters are n estimators and learning rate. n estimators controls the number of weak

learners while learning rate controls updates of weights in each boosting round.

For n estimators, a large value generally gives better performance. However, we found during

tuning that a small value of 50 gave better performance for our data than other larger values.

The trade off is that we need to set a larger learning rate. min samples split is the minimum

number of samples required before splitting is allowed. min sample leaf is the minimum number

of samples left at a node. max depth is the maximum depth of each tree. max features is the

number of features to sample for the best split. Using ’none’ means that the total number of

training features is used.

We will describe the algorithm in more detail in Section 3.3 on the XGBoost library.

3.2 Cross-validation Results

Table 3.1 presents the cross-validation results.

Algorithm F1 (%)

Logistic Regression 78.5

Naive Bayes (Bernoulli) 76.2

Naive Bayes (Multinomial) 73.9

K Nearest Neighbors 56.7

Support Vector Machine (Linear) 74.5

Decision Tree 70.5

Random Forest 73.8

AdaBoost 68.8

Gradient Tree Boosting 72.5

Table 3.1: Cross-validation F1 results for all algorithms

14

3.2.1 Conclusions

From Table 3.1, we see that the Logistic Regression model has the best performance. This is not

so surprising considering the fact that Logistic Regression is a simple linear model which generally

works well with different types of data inputs. It is also very fast to train. Thus logistic regression

is often used as a baseline model and will serve as our baseline result as well.

K Nearest Neighbors performed the worst. This is likely due to the fact that our features

are one-hot encoded and the training data is high-dimensional and is extremely sparse. K Nearest

Neighbor uses Euclidean distances to compute the distances between data instances, and Euclidean

distance is not a good measure of similarity for sparse one-hot encoded data. For one-hot encoded

data, the Euclidean distance between two instances will be the square root of a summation of 1s

and 0s, that is, the value of the distance depends on the number of 1s in the summation. If the

data is very sparse, it is highly unlikely for two instances to have a large number of common tokens.

This implies that the distances between any two instances with the same N number of tokens (and

thus will have N number of 1s in their respective vectors) would likely be the same. Conversely,

the distance between one instance with a small number of tokens and another with a large number

of tokens would be large, even if they are quite similar with some common tokens between them.

The ensemble models (Random Forest, AdaBoost, Gradient Tree Boosting) performed re-

spectably. Results from other Kaggle competitions have shown that Gradient Tree Boosting is

the algorithm of choice for many high performing competition entries. In particularly, the XG-

Boost library is widely used because it offers superior performance with regards to speed and

other features such as parallelization, memory efficiency, and automatic handling of missing feature

values.

3.3 XGBoost

In our remaining experiments, we will attempt to improve on our baseline result from the Logistic

Regression model. We will use Gradient Tree Boosting from the XGBoost library and try to tune

it to achieve better results.

Boosting is an ensemble learning method in which the algorithm adaptively assigns weights to

data instances at each boosting round. Higher weights are assigned to data instances which are

currently misclassified so that these instances have a higher chance of being sampled at the next

round.

15

XGBoost is a library which implements boosting algorithms with gradient descent. The base

classifier can be a linear function or a decision tree. Before deep learning methods started to

outperformed traditional machine learning algorithms, gradient tree boosting models (also known

as gradient boosting machines) achieved state-of-the-art results on many benchmarks [5] and was

used in a number of Kaggle winning entries.

3.3.1 Model Hyperparameters

We will now use XGBoost to train a Gradient Tree Boosting model. The following are the hyper-

parameters which we tune for our tree models:

� n estimators (range [0,∞], default = 100) Number of boosting rounds.

� learning rate (range [0,1], default = 0.3) Learning rate for updating of feature weights.

� max depth (range [0,∞], default = 6) Maximum depth of a tree.

� subsample (range [0,1], default = 1) Fraction of data instances to be randomly sampled to

train each tree.

� colsample bytree (range [0,1], default = 1) Fraction of features to be randomly sampled to

train each tree.

3.3.2 Experiments

To determine the best hyperparameter values, we do a grid search over each parameter. The most

important hyperparameters are n estimators and learning rate. For gradient tree boosting

models, there is a trade-off between the number of trees and the learning rate [6]. A larger number

of trees would require a smaller value of learning rate and vice versa.

First, we fix the learning rate = 0.1 and set colsample bytree = 0.5, and subsample = 0.5.

The default value of max depth = 6 is used. Using a subsample ratio of 0.5 of the training instances

and features for each tree produces weaker trees and allows incremental learning. Subsampling

ratios of 0.3 to 0.5 have been shown to produce better models than using the entire set of instances

and features [7].

16

Figure 3.1 show the result of the grid search over n estimators, using intervals of 100 from

n estimators = 100 to n estimators = 2000.

Figure 3.1: Plot of F1 score vs n estimators

We see that the F1 score increases steadily and then plateaus from around n estimators =

700 onwards. Statistics from the algorithm show that n estimators = 1600 produced the best

performance. However we shall use n estimators = 700 to shorten the training time.

We now set n estimators = 700 and do a grid search over max depth. Figure 3.2 shows the

result of the grid search using intervals of 1 from max depth = 4 to max depth = 10.

17

Figure 3.2: Plot of F1 score vs max depth

3.3.3 Final Model

We further tuned the subsample ratio and experimentated with colsample bylevel (range [0,1],

default = 1) and colsample bynode (range [0,1], default = 1). The latter two parameters set the

sampling ratio for features for each depth level and for each node respectively.

We obtain our best model using the following set of hyperparameters:

� n estimators = 700

� learning rate = 0.1

� max depth = 7

� subsample = 1

� colsample bytree = 0.5

� colsample bylevel = 0.5

� colsample bynode = 1

Table 3.2 shows the best F1 scores for each set of parameters. learning rate = 0.1 and

colsample bynode = 1 are fixed for all models.

18

Parameters Best F1 Score

n estimators = 1600, max depth = 6, subsample = 0.5,

colsample bytree = 0.5, colsample bylevel = 1

74.5%

n estimators = 700, max depth = 6, subsample = 0.5,

colsample bytree = 0.5, colsample bylevel = 1

74.6%

n estimators = 700, max depth = 7, subsample = 1,

colsample bytree = 0.5, colsample bylevel = 0.5

76.2%

Table 3.2: XGBoost training results

3.4 Leaderboard Result and Conclusions

Figure 3.3 shows a screenshot of our test score on the Kaggle leaderboard. As of November 29,

2020, our position on the leaderboard was 666 out of 1269 entries. It must be noted that a majority

of the top 100 scores on the leaderboard are perfect scores of 1.0, because it has been reported that

the test dataset ground truths can be found online. Among the legitimate scores in the top 100

rankings, most scores are between 84% and 85%. Based on the discussion and solutions shared by

other Kaggle users on the website, we believe that deep learning methods are necessary to further

improve the test results. Thus our score of 79.5% shows that our Gradient Tree Boosting model is

relatively successful in predicting disaster tweets. When we used our baseline Logistic Regression

model to predict the test instances, the result in Kaggle was slightly worse than this best score.

Considering that our test result is much better than the cross-validation training result, it shows

that our Gradient Tree Boosting model generalizes well and that it is not overfitted.

Figure 3.3: Screenshot of the Kaggle leaderboard (November 30, 2020)

19

Chapter 4

Conclusion

We conclude our report with an overall summary and a discussion on the lessons we have learned.

4.1 Summary

In this project, we analyzed a set of 7614 raw tweets containing words related to disasters. Our

objective was to build a text classification model to classify a tweet into one of two classes: class 1

(a disaster tweet), or class 0 (a non-disaster tweet).

From the raw data, we selected a bag of words as features. This set of tokens contain 3624

tokens consisting of keywords related to disasters, hastags prefixed with the # symbol, usernames

prefixed with the @ symbol, and other frequently occurring words in the tweets. The disaster

keywords are provided in a separate column in the raw data. The hastags, usernames, and other

words are extracted from the raw tweets after text pre-processing.

We experimented with various basic and ensemble classification algorithms. Each model is

trained using five-fold cross validation and evaluated using the F1 metric. The logistic regression

model produced the best performance, with an cross-validation score of 78.5%. Next, we experi-

mented with the XGBoost library. Our best performing model is a Gradient Tree Boosting model,

trained using XGBoost, which achieves a F1 score of 79.5% on the official test dataset in Kaggle.

Although the baseline model has a higher training score than the Gradient Tree Boosting model,

its test result is slightly worse.

Based on the discussion and solutions shared by other Kaggle users on the website, we believe

that deep learning methods are necessary to improve the test results. Most of the top 100 F1 scores

on the leaderboard are between 84% and 85%. Thus our score of 79.5% shows that our Gradient

20

Tree Boosting model is relatively successful in predicting disaster tweets.

4.2 Lessons Learned

We learned some valuable lessons from working on this project. First, we found that using a more

complex algorithm does not necessarily give better results. Logistic Regression outperformed more

complicate ensemble algorithms in our experiments.

Second, when tuning an algorithm that performs poorly, it is hard to tell whether it is due

to poor choice of hyperparameter values or due to the fact that the algorithm does not work well

with the training data. Some algorithms might not give improved performance no matter how the

parameters are tuned. We can only conclude that the problem lies in the algorithm after much

tuning. While this is part and parcel of experimentation in machine learning, it is time consuming

and costly.

Our conclusion is that the performance of a model depends on the type and nature of the

training data (binary or continuous values, sparse data, etc.), the size of the training dataset, and

the type of classification task (binary or multi-class).

4.3 Kaggle Competition Page and Source Files

The Kaggle webpage for this project is at:

https://www.kaggle.com/c/nlp-getting-started/

The source files, including the data, models, and results, are accessible at:

https://github.com/ronkow/kaggle-disaster-tweets

4.4 Allocation of Work

Work was allocated as follows:

� Data preprocessing: Ron

� Model training: Brandon, Ron

� Report writing: Brandon, Ron

21

https://www.kaggle.com/c/nlp-getting-started/
https://github.com/ronkow/kaggle-disaster-tweets

Bibliography

[1] Kaggle. https://www.kaggle.com/. 2

[2] Twitter. https://twitter.com/. 1

[3] Weibo. https://weibo.com/. 1

[4] Xgboost. https://xgboost.ai/. 4

[5] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages

785–794, 2016. 4, 16

[6] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of

statistics, pages 1189–1232, 2001. 16

[7] Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis,

38(4):367–378, 2002. 16

22

https://www.kaggle.com/
https://twitter.com/
https://weibo.com/
https://xgboost.ai/

Appendices

A List of 222 Keyword Tokens

23

24

B List of Top 100 Hashtags and Their Frequencies (Training)

25

C List of Top 100 Usernames and Their Frequencies (Training)

26

D List of Top 100 Other Tokens and Their Frequencies (Training)

27

	Abstract
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Organization of the Report

	Proposed Solution and Model Development
	Proposed Solution
	Raw Data Analysis
	Bag of Words
	Text Preprocessing
	Feature Selection
	Feature Values
	Test Dataset Preprocessing and Prediction
	Performance Metrics
	Challenges

	Experiments and Results
	Algorithms
	Logistic Regression
	Naive Bayes Bernoulli
	Naive Bayes Multinomial
	K Nearest Neighbors
	Support Vector Machine (Linear)
	Decision Tree
	Random Forest
	AdaBoost
	Gradient Tree Boosting

	Cross-validation Results
	Conclusions

	XGBoost
	Model Hyperparameters
	Experiments
	Final Model

	Leaderboard Result and Conclusions

	Conclusion
	Summary
	Lessons Learned
	Kaggle Competition Page and Source Files
	Allocation of Work

	Bibliography
	Appendices
	List of 222 Keyword Tokens
	List of Top 100 Hashtags and Their Frequencies (Training)
	List of Top 100 Usernames and Their Frequencies (Training)
	List of Top 100 Other Tokens and Their Frequencies (Training)

