Al6122 Text Data Management and Processing

Assignment
Balraj Singh Bains Brandon Chua Shao Jie
Nanyang Technological University Nanyang Technological University
balrajo01@e.ntu.edu.sg bran0026@e.ntu.edu.sg
Ron Kow Kheng Hui Samuel Samsudin Ng
Nanyang Technological University Nanyang Technological University
$190103@e.ntu.edu.sg sa0002@e.ntu.edu.sg

ABSTRACT

We analyzed the text data in user reviews of cell phones and ac-
cessories posted on Amazon over a 14-year period. In this paper,
we present the results of our analysis, showing review distribu-
tions, ratings distributions, and review length distributions. We
performed part-of-speech tagging on a sample of reviews to see
how the NLTK tagger handles bad grammar in reviews. We also
present a method of extracting keyphrases and sentences to sum-
marize the reviews of a product. Lastly, we present a sentiment
classification system using keyphrases as features and the Random
Forest algorithm as the classifier.

KEYWORDS

text mining, product reviews, extractive summarization, sentiment
classification

1 INTRODUCTION

In this paper, we present the results from our analysis of the prod-
uct review dataset from UC San Diego (http://jmcauley.ucsd.edu/
data/amazon). The dataset is a collection of 190,919 user reviews
of cell phones and accessories, posted on Amazon from 2001 to
2014. We also present our development of two applications — an ex-
tractive summarizer and a sentiment classification system. Given
a set of reviews of a particular product, our summarizer extracts
keyphrases and sentences to summarize all the reviews. Our sen-
timent classification system classifies a review as positive or nega-
tive given just the review text (excluding any user rating). We used
Python libraries such as NLTK and pandas for all pre-processing
and analysis.

2 DATASET ANALYSIS
2.1 Data

In the dataset, each review has the following components:

e reviewerlID, the ID of a reviewer.

asin, Amazon standard identification number unique to each
product.

reviewText, the full review text by the reviewer.

overall, the rating (1.0, 2.0, 3.0, 4.0, 5.0) of the product.
summary, a short summary of the review.

unixReviewTime, the Unix timestamp

reviewTime, the timestamp in MM DD, YYYY format.

The data was provided as a JSON (JavaScript Object Notation) file.
Table 1 shows some statistics for the data.

Table 1: Dataset Statistics

Total number of reviews 190,919
Total number of unique products 10,420
Total number of unique reviewers 27,874
Range of years 2001-2014

2.2 Python Libraries

We pre-processed the data using Python’s internal JSON [4] library
and pandas [1] - a popular data analysis and manipulation library.
The JSON data is converted into a pandas.DataFrame object — a
data table. pandas uses the Matplotlib[5] library to plot results.
For some analysis, we use NumPy[3] and NLTK[8] — a natural lan-
guage processing library. Table 2 shows an example of how the
data is represented as a pandas.DataFrame.

2.3 Review and Rating Distributions
In the first part of our analysis, we:

o plotted the review distribution by number of products and
by number of reviewers

o defined the criteria for categorizing reviewers into five ac-
tivity levels — most active, active, average, not very active,
not active — and categorized the reviewers into these five
groups

o plotted the rating distribution for each group of reviewers

e investigated whether active reviewers are more or less likely
to give low ratings compared to less active reviewers

2.3.1 Review Distribution by Number of Products. We analyzed the
review distribution by number of products, i.e. how many products
have x number of reviews. We present the results as follows:

e Summary statistics. (Table 3)

e Histogram (in log scale) showing the review distribution for
the entire range of review counts (Figure 1a)

e Histogram (in linear scale) showing the review distribution
for 0 to 100 reviews (Figure 1b)

Most of the products have less than 50 reviews.

http://jmcauley.ucsd.edu/data/amazon
http://jmcauley.ucsd.edu/data/amazon

Table 2: A Review as a pandas.DataFrame

reviewerlD asin reviewText overall summary unixReviewTime reviewTime
0 ASY55RVNILOUD 120401325X These stickers work... 5.0 Really great product. 1389657600 01 14, 2014
2 10°
3 1 1500
g E
& 102 2
5] o 1000
@ o
s} f-
£ 10t 2
Z E 500
o =
© L
10° (1 ITTTTRT 1 . 0 ‘ _ :
0 200 400 600 800 0 20 40 60 80 100
Number of Reviews Number of Reviews
(a) 0 to 836 Reviews (log Scale) (b) 0 to 100 Reviews (Linear Scale)

Figure 1: Review Distribution (by Number of Products)

12000
= 10°
w
% \g 10000
— 3
30 2 8ooo
o [
= o
o 10? « 6000
g o
2 4000
§ 10 E
E >
2 = 2000
- 100 0
25 50 75 100 125 150 0 10 20 30 40
Number of Reviews Number of Reviews
(a) 0 to 152 Reviews (log Scale) (b) 0 to 40 Reviews (Linear Scale)
Figure 2: Review Distribution (by Number of Reviewers)
Table 3: Number of Reviews Per Product Table 4: Number of Reviews Per Reviewer
Statistic ~ Reviews Per Product Statistic ~ Reviews Per Reviewer
Maximum 836 Maximum 152
Minimum 1 Minimum 1
Mean 18.32 Mean 6.85
Median 9.0 Median 6.0
2.3.2 Review Distribution by Number of Reviewers. We analyzed e Histogram (in log scale) showing the review distribution for
the review distribution by number of reviewers, i.e. how many re- the entire range of review counts. (Figure 2a)
viewers posted x number of reviews. We present the results as fol- e Histogram (in linear scale) showing the review distribution
lows: for 0 to 40 reviews. (Figure 2b)

e Summary statistics. (Table 4) Most of the reviewers posted less than 20 reviews.

Table 5: Number of Reviews Per Year

Year Total Reviews

2001 1
2002 1
2003

2004 44
2005 129
2006 240
2007 389
2008 676
2009 1,304
2010 3,414
2011 9,516
2012 29,612
2013 91,261
2014 54,330

2.3.3 Categorizing Reviewers by Activity Levels. We categorized all
the reviewers into five groups — most active, active, average, not
very active, and not active. We simply consider the average number
of reviews posted by a reviewer over 10 years. We choose a 10-year
time frame (2005 to 2014) because there were very few reviews
from 2001 to 2004. We disregard the fact that some reviewers could
have started posting reviews a number of years after 2005; others
could have stopped posting after a few years.
We present the results as follows:

e The number of reviews in each year. (Table 5)

o Classification criteria. (Table 6)

o Rating distribution showing, in each group, the number of
reviews for each rating and the proportion of all reviews.
(Table 7)

o Bar plots showing the rating distributions. (Figure 3)

From Table 7 and Figure 3, we see that the percentages of low
ratings (1.0 or 2.0) are much smaller for the most active and active
reviewers (1.4% and 5.7% respectively) compared to the correspond-
ing percentages for the other three groups (9.3%, 11.2%, 13.4%). We
conclude that active reviewers are less likely to give low ratings
compared to less active reviewers. One possible reason for this
could be that active reviewers tend to shop more online and are
more informed about good deals and sellers, and hence resulting
in more positive reviews.

2.4 Sentence Segmentation

We performed sentence segmentation on each review using NLTK.
We present the results as follows:

e Summary statistics. (Table 8)

e Histogram (in log scale) showing the review length distribu-
tion for the entire range of sentence counts. (Figure 4a)

e Histogram (in linear scale) showing the review length dis-
tribution for 0 to 50 sentences (Figure 4b)

There are reviews with no text (minimum number of sentences =
0 from Table 8). Most of the reviews have less than 20 sentences.

2.5 Tokenization and Stemming

We performed tokenization on each review and counted the unique
whole tokens in each review. Then we stemmed the tokens and
counted the unique stemmed tokens in each review. We converted
all text to lower case before tokenization and only included alpha-
betic tokens. Stemming was done using NLTK’s PorterStemmer
class which is an implementation of Martin Porter’s stemming al-
gorithm [9]. We present the results as follows:

e Summary statistics. (Table 9)

e Histogram (in log scale) showing the review length distribu-
tion for the entire range of whole tokens. (Figure 5a)

e Histogram (in linear scale) showing the review length dis-
tribution for 0 to 400 whole tokens. (Figure 5b)

e Histogram (in log scale) showing the review length distribu-
tion for the entire range of stemmed tokens. (Figure 5c)

e Histogram (in linear scale) showing the review length dis-
tribution for 0 to 400 stemmed tokens. (Figure 5d)

Stemming reduced the token counts by 1 to 2 tokens per review on
average (from Table 9). The shapes of the histograms are similar,
and most of the reviews have less than 200 unique tokens.

2.6 POS Tagging

In the last part of our data analysis, we performed part-of-speech
(POS) tagging on a random sample of five sentences. We used NLTK’s
POS tagger, which uses the Penn Treebank tagset [10]. In online re-
views, wrong grammar and punctuation are very common. There
are also many misspelled words and informal lingo which will be-
come out-of-vocabulary words for the tagger. We wanted to find
out how the tagger handles these cases.

The five selected sentences are the first sentences from five ran-
domly sampled reviews. They are:

(1) This case protects this phone from MANY a fall
I've had.

(2) The real thing..and did data and power.

(3) great is's gentle on my ipod and the price was
a steal and i wouldbuy it again and again

(4) T usually have to buy multiple stylus pens
because with a family of 4, they get lost,
broken, and worn down.

(5) Words can NOT express how powerful this phone is.

(1), (4) and (5) have decent grammar. The only issue is the word
"can NOT' in (5). The other sentences have bad grammar and punc-
tuation. Listing 1 shows the tagging results.

After tokenization, the problematic tokens are 'thing..and’
and 'wouldbuy' in sentences 2 and 3 respectively. 'thing..and’
was tagged as NN (singular noun), which is the correct tag for
"thing'. 'wouldbuy' was tagged as VBP (verb, non-3rd person
singular, present), probably because the token comes after 'I'. In
sentences 1 and 5, '"NOT' and 'MANY' were mistaken for acronyms
and tagged as NNP (proper noun). In sentence 3, 'gentle’ was
mistaken for a noun because the preceding tokenis "'s", a posses-
sive ending. Lastly, 'I' was tagged as NN instead of PRP (personal
pronoun) in sentence 3. Table 10 shows the correct tags for these
words.

Number of Reviews

Table 6: Classification of Reviewers

Activity Level ~ Reviews Per Year Reviews in 10 Years Total Reviewers Total Reviews
Most active >6 61-152 28 2,733
Active 3-6 31-60 76 3,072
Average 2-3 21-30 212 5,151
Not very active 1-2 10-20 2,773 34,420
Not active <1 1-9 24,785 145,543
Table 7: Rating Distributions
Number of Reviews (% of Total Within Group)
Activity Level ~ Rating 1.0 Rating 2.0 Rating 3.0 Rating 4.0 Rating 5.0
Most active 11 (0.4) 28 (1.0) 100 (3.6) 546 (20.0) 2,048 (74.9)
Active 62 (2.0) 114 (3.7) 265 (8.6) 700 (22.8) 1,931 (62.9)
Average 221 (4.3) 260 (5.0) 571 (11.1) 1171 (22.7) 2,928 (56.8)
Not very active 2,024 (5.9) 1,814 (5.3) 3,860 (11.2) 7,450 (21.6) 19,272 (56.0)
Not active 10,760 (7.4) 8,673 (6.0) 16,279 (11.2) 29,437 (20.2) 80,394 (55.2)
2000 2000 3000
® v 2500
1500 § 1500 §
'5 'g 2000
=4 o
1000 ‘s 1000 ‘5 1500
2 £ 3000
500 £ s00 5
= < 500
0 0 7 T T T 0
o o o < =) o o = o =} =} =} =} o o
— o~ m ~ [Te) — m F n — al <]
Rating Rating Rating
(a) Most Active Reviewers (b) Active Reviewers (c) Average Reviewers
20000 80000
§ 15000 8 60000
> >
& &
‘5 10000 S 40000
3 3
£ s000 £ 20000
= =
0 0
o o o o o 5] =) o o o
—) s [— ~N o < n
Rating Rating

(d) Not Very Active Reviewers

(e) Not Active Reviewers

Figure 3: Rating Distribution for the Five Groups of Reviewers

Table 8: Number of Sentences Per Review

Sentences Per Review

262

0

5.16
4.0

Statistic
Maximum
Minimum
Mean
Median
H
o 10*
>
Q
< 103
G
o 2
g 10
£ o
2 10
810°

0 50 100 150 200 250
Number of Sentences

(a) 0 to 262 Sentences (log Scale)

30000

20000

10000

Number of Reviews

0 20 40 60 80 100
Number of Sentences

(b) 0 to 50 Sentences (Linear Scale)

Figure 4: Review Length Distribution (by Number of Sentences)

Table 9: Number of Unique Tokens Per Review

Statistic =~ Whole Tokens Per Review Stemmed Tokens Per Review

Maximum 1,453 1,224
Minimum 0 0
Mean 55.65 53.87
Median 37.0 36.0
104
B
w
% 10° £ 6000
= 3
5 102 = 4000
I —
£ I
2 10! £ 2000
; =
i<}
T 10 bl \ 0
0 250 500 750 1000 1250 1500 0 100 200 300 400

Number of Whole Tokens

(a) 0 to 1,453 Whole Tokens (log Scale)

[y
o
IS

10°

102

10!

log (Number of Reviews)

10°
0 250 500 750 1000 1250
Number of Stemmed Tokens

(c) 0 to 1,224 Stemmed Tokens (log Scale)

Number of Whole Tokens

(b) 0 to 400 Whole Tokens (Linear Scale)

6000

4000

2000

Number of Reviews

0 100 200 300 400
Number of Stemmed Tokens

(d) 0 to 400 Stemmed Tokens (Linear Scale)

Figure 5: Review Length Distribution (by Number of Whole and Stemmed Tokens)

Listing 1: Tagging Results for Five Random Sentences
[('This', 'DT"), ('case', 'NN'), ('protects', 'VBZ'), ('this',
'DT'), ('phone', 'NN'), ('from', 'IN'), ('MANY', 'NNP'),
(‘a', 'DTY), ('fall’, 'NN'), ('I', 'PRP'), ("'ve”, 'VBP'),
('had" 'VBN‘)’ (I-V’ V.|)]

[('The', 'DT'), ('real', 'JJ'), ('thing..and', 'NN'), ('did',
'vBD"), ('data', 'NNS'), ('and', 'CC'), ('power', 'NN'),
¢.", h1

[('great', 'J7"), ('is', 'vBZ"), ("'s", 'POS"), ('gentle', 'NN'"),
('on', "IN, ('my', 'PRP\$'), ('ipod', 'NN'), ('and',
'cC"), ('the', 'DT'), ('price', 'NN"), ('was', 'vBD'), ('a',
'DT"), ('steal', 'NN'), ('and', 'CC"), ('i', 'NN"),
('wouldbuy', 'VBP'), ('it', 'PRP"), ('again', 'RB'), ('and',
'cC"), ('again', 'RB')]

[('T", '"PRP"), ('usually', 'RB"), ('have', 'VBP'), ('to', 'T0"),
('buy', 'VB"), ('multiple', 'JJ"), ('stylus', 'NN"),
('pens', 'NNS'), ('because', 'IN"), ('with', 'IN"), ('a',
IDTI), (I.Family|’ |NN|), ('O‘F', IINI)’ (l4!’ !CD!)y |’|’
", ('they', 'PRP"), ('get', 'VBP'), ('lost', 'VBN"),
(|,l’ 'y‘)y ('broken', IVBN|)’ |Yl’ l,l)’ (‘and', ‘CC'),
('worn', 'vBD'), ('down', 'RB"), ('.', '."D]

[('Words', 'NNS"), ('can', 'MD'), ('NOT', 'NNP'), ('express',
'VB"), ('how', 'WRB'), ('powerful', 'JJ"), ('this', 'DT"),
('phone’, 'NNY), ('is', 'vBz"), ('.', '.")]

Table 10: Wrongly Tagged Tokens

Sentence Token Given Tag Correct Tag
1 "MANY’ NNP JJ
3 'gentle’ NN i
3 T’ NN PRP
5 "NOT’ NNP RB

3 REVIEW SUMMARIZER
3.1 Objectives

We set out to develop an automatic extractive summarizer to achieve
two goals. First, the summary should inform us about the product,
including the brand, its features, and the quality of the product as
rated by the reviewers. For instance, if the product is a headphone,
we would like to know if it is a wired or bluetooth headphone. We
would also like to know what the reviews say about its sound qual-
ity. Second, the summary should inform us about the general sen-
timents of the reviews.

3.2 Previous Work

To fulfill the two goals, the system needs to be able to recognize
named entities (brand and model of the product), words describ-
ing features and quality, and sentiment words. Although we have
a large dataset in which every record contains a full review and a

summary of the review, we will use unsupervised methods to de-
velop a summarizer. Among unsupervised methods, graph-based
methods originating from the TextRank algorithm [6] have been
well-studied [7]. We initially experimented with TextRank to score
sentences. We used Glove word vectors to represent sentences as
vectors, and then created a matrix of cosine similarities between
sentences before applying the TextRank algorithm.

However we are more interested in methods based on term fre-
quencies (tf) and inverse document frequencies (idf), so that we
have full control over how we score candidate phrases and sen-
tences. The method which we present in this paper was inspired
by the keyphrase extraction system YAKE! [2] and the method pro-
posed by [11].

3.3 Methodology

It is difficult to achieve our goals with a summary consisting of only
keyphrases or only sentences. Keyphrases alone cannot convey the
general sentiment of a set of reviews. A handful of sentences may
not capture all the important words relevant to the product. Thus
our summarizer extracts a set of keyphrases (unigrams, bigrams
and trigrams) and a set of sentences. We describe our keyphrase
extraction method as follows:

(1) Prepare the data. For the summarizer, we need the prod-
uct ID, the number of reviews for each product, and the com-
plete review text.

Prepare the stopword list. We add more words to NLTK’s
stopword list, by including contractions that were left out
of the list, such as i'm. We also expect some reviewers to
omit the apostrophe. So we included contractions without
the apostrophe, such as isnt. We also add informal lingo
such as lol. Lastly, we remove the words not and very from
NLTK’s list as these convey sentiments.

Prepare a punctuation list for punctuation removal.
We exclude - (hyphen), $ and % from our punctuation list.
We include hyphens in tokens because we do not wish to
break up hyphenated words. $ and % are included because
they convey information which may be relevant to a review.
Design two different tokenization functions.
text_preprocess_clean() replaces all the punctuation in
the punctuation list with a space, performs case-folding, re-
moves numbers, and tokenize the text, excluding stopwords.
text_preprocess() performs case-folding and tokenizes
the text, including stopwords and punctuation. Spaces are
added to both sides of a period so that text such as xxx.yyy
are not regarded as a single token 'xxx.yyy'. In both func-
tions, we replace the plural forms of all cell phones-related
words to their singular forms. For example, we replace cases
with case and batteries with battery. These are very
common words in reviews and we want to ensure that the
singular and plural forms are not counted separately. Note
that we do not stem or lemmatize the text as we want to
preserve the complete spelling of all words.

Calculate idf. For all words (excluding stopwords) in the
corpus of reviews, we create a dictionary which maps each
word to its idf value, defined as:

idf =1og10@[(document count)/(document frequency)],

—
oY)
~

—
5Y)
=

—
N
=

—~
[5))
=

(6)

™

®)

where a document is defined as the set of all reviews for
a product and document frequency is the number of docu-
ments containing the word. That is, the document count is
the number of unique products.

Calculate tf and tf-idf. For a particular product, we tok-
enize (excluding stopwords) all its reviews. Then we create
two dictionaries. The first dictionary maps each token in the
set of tokens to its tf value, defined as:

tf =1 + logl@(token frequency),

where token frequency is the number of times the token oc-
curs in the product’s reviews. The second dictionary maps
each token in the set of tokens to its tf-idf value, by mul-
tiplying tf and idf:

tf-idf = tf x idf,

Select candidate unigrams, bigrams and trigrams. We
create three separate sets of candidates, for unigrams, bi-
grams and trigrams. For a particular product, we first to-
kenize all its reviews into unigrams, bigrams and trigrams.
Unigram tokens exclude stopwords. For bigrams and trigrams
tokens, we include stopwords and punctuation during tok-
enization and concatenate contiguous tokens to form sepa-
rate sets of bigrams and trigrams. From the set of bigrams
(or trigrams), we select bigrams (or trigrams) which do not
contain any stopwords or punctuation as candidates. The
following example shows this process:

REVIEW TEXT:

Cool phone! Love its large screen and colors.
TOKENIZATION:

['cool’, 'phone’', '!') 'love', 'its', 'large’,
"screen’, 'and', 'colors’, '.']

BIGRAMS:

[('cool', 'phone'), ('phone', '!'),

(', '"love'), ('love’, 'its'),

('its', 'large'), ('large’', 'screen'),
('screen', 'and'), ('and', 'colors'),
('colors’, ".")]

CANDIDATE BIGRAMS:

[('cool', 'phone'), ('large’', 'screen')]

If we had excluded stopwords and punctuation during to-
kenization, we would get more candidate bigrams, includ-

ing nonsensical bigrams ('phone’, 'love’) and ('love’,
'large’):

TOKENIZATION:

['cool’, 'phone', 'love', 'large', 'screen',
'colors']

CANDIDATE BIGRAMS:

[('cool', 'phone’), ('phone’', 'love'),

('love', 'large'), ('large', 'screen'),
('screen’, 'colors’')]

Select final candidates by parts-of-speech. We POS-tag
the sets of candidate unigrams, bigrams and trigrams and
use the tags to select final candidates. For unigrams, we only
select nouns (tags NN, NNS, NNP, NNPS) as final candidates.
For bigrams, we select those with these POS tag patterns: all
nouns (NN, NNS, NNP, NNPS) (e.g. battery charger), adjec-
tive (JJ, JJR, JJS, CD) followed by noun (e.g. great phone), and

(10)

adverb (RB, RBR, RBS) followed by adjective (e.g. not great).
For trigrams, we select those with these POS tag patterns:
all nouns (e.g. car phone holder), adjective followed by two
nouns (e.g. great battery charger), and adverb followed by
adjective followed by noun (e.g. very good charger).
Specific phone brands and models are useful information
in a summary. Therefore, we include as candidates those
phrases for which the first word (for bigrams and trigrams)
or second word (for trigrams) is a popular phone brand. For
such phrases, it is possible that the second or third word
in the phrase is the model name or number. We create a
list of popular phone brands (such as apple and samsung)
and models (such as iphone and galaxy) to match with the
word.
Score the candidates. The score for each candidate con-
sists of two components — the token frequency tf and the
review frequency rf which we define as follows:
Token frequency tf: tf is the number of times the token
occurs in the set of all reviews of the product. This value is
stored in the tf dictionary created in Step (6). For unigrams,
the score is simply the tf value. For bigrams and trigrams,
we add the tf values of the component tokens to get the tf
score of the bigram or trigram. This will no doubt give bi-
grams and trigrams a higher score than unigrams, which is
fair because we believe bigrams and trigrams convey more
information. However, we will see later that rf offsets this
advantage.
Review frequency rf: rf is the number of reviews of the
product containing the unigram, bigram or trigram. We cal-
culate this score using two different formulas, one for uni-
grams and bigrams, and one for trigrams. For a unigram or
bigram x, the formula is:

rf =RF_WEIGHT x loglo(rf[x]) + rf[x1/n,
and for a trigram x, the formula is:

rf =loglo(rflx1) + rflx1/n,

where RE_WEIGHT is a parameter which allows us to adjust
the influence of unigrams and bigrams, rf[x] is the dictio-
nary mapping a unigram, bigram or trigram (x) to its rf
value, and n is the number of reviews the product has. The
justification for this formula is as follows: The log term is
0 if x occurs in only one review. However the value of rf
depends on how many reviews n a product has. If there are
very few reviews, a small rf value does not mean that x
is not important. Therefore we add rf[x]/n to give more
weight to small values of rf and n. From our experiments,
we observe that RF_WEIGHT = 2 is a suitable weight to pre-
vent trigrams from always outscoring unigrams and bigrams.
Note that unigrams will tend to have much larger rf values
than bigrams and trigrams. So this score offsets the higher
tf scores that bigrams and trigrams will have.
Calculate the final score and rank the candidates. The
final score is the sum of the tf and rf scores. We rank the
candidates and select the top k candidates based on the fol-
lowing formula:

k = ceil(SUMMARY_SIZE_FACTOR X logl@(total
number of words),

where total number of words is the total word count in
all the reviews of the product and ceil is the ceiling func-
tion. We set SUMMARY_SIZE_FACTOR = 5, which will give k =
20 if the word count is 10,000.

(11) Check distance between candidates. As we did not re-
duce our tokens to root forms, we include this step to filter
out candidates that are very similar (such as singular and
plural forms). Using the Levenshtein distance function from
the jellyfish library, we use the following formula to cal-
cuate the distance between two terms t1 and t2:

distance = 1 - jellyfish.levenshtein(t1,t2) /
max(len(t1),len(t2))

For any two candidates in the ranked shortlist, if this dis-
tance is >= 8.0, we remove the shorter candidate from the
shortlist. The summarizer will finally output the candidate
phrases with the highest final scores, in alphabetical order.

The second part of our summarization process is sentence ex-
traction. Our goal is to extract sentences which convey the most
information, by selecting more expressive comments containing
richer words instead of comments with common words like ' good
phone’ or 'i like this product’. To achieve this, we will use
tf-idf to score every sentence, and then rank and select the top-
scoring sentences. We describe the sentence extraction method as
follows:

(1) Sentence tokenize all the reviews of the product. We
use NLTK’s sentence tokenizer.
(2) Create lists of unigrams, bigrams and trigrams in each
sentence. For each sentence, we tokenize it (excluding stop-
words and punctuation) and form sets of unigrams, bigrams
and trigrams.
Calculate tf-idf for each unigram, bigram and trigram
in each sentence. For bigrams and trigrams, we calculate
the tf-idf score the same way we calculated the tf score
— by adding the tf-idf values of the component tokens.
Calculate the final score for each sentence and rank
the sentences. The final score of a sentence is calculated
using the following formula:

3

~

“

=

score = (sum of tf-idf scores)/(length of
sentence),

where the sum of tf-idf scores is the sum of the scores
of all unigrams, bigrams and trigrams in the sentence, and
the length of sentence is the number of words in the sen-
tence. Normalization ensures that longer sentences do not
outscore shorter sentences. In our system, we allow the user
to select the number of sentences to extract. The summarizer
will output the sentences with the highest final scores.

3.4 Discussion: tf vs tf-idf

We use tf instead of tf-idf to score the keyphrases. tf-idf favours
words which occur frequently in the product’s reviews but rarely
in other products’ reviews. This does not help in achieving our goal
of extracting phrases which convey the most information about the
product. Such phrases will always be the ones that occur most fre-
quently in the product’s reviews, regardless of their occurrences
in the rest of the corpus. Our experiments show that using tf-idf

gives undesirable output, such as gibberish and badly misspelled
words, foreign language words, and rare and irrelevant words (e.g.
dunkin donuts) which convey no information about the product.
Using tf to score phrases give much better results.

Using tf-idf to score sentences results in more original and
informative comments which will be of interest to users. As the
score is normalized, one rare and irrelevant word in a sentence is
unlikely have too much influence on the final score.

3.5 Limitations of our Design

There are other features which could help in scoring keyphrases,
such as word casing (upper case words more likely to be named
entities) and word position (words mentioned at the start of a doc-
ument could be more important). We did not have time to explore
these. Due to our POS filtering, our system tends to extract mostly
noun phrases and adjective-noun phrases. Extracting sentiment
words is a harder task which we have not explored in great de-
tail (we present a basic extraction of sentiment words in Section 4).
Designing a state-of-the-art extractive summarizer is a challenge
which we hope to achieve in our future research.

3.6 Evaluation

We briefly describe two ways of evaluating the summary:.

(1) Matching machine results with human results. This is
a common evaluation method used in NLP tasks. If the ma-
chine results are comparable to (or better than) human re-
sults, we can consider the problem solved. To evaluate ex-
tractive summaries, we can find the precision and recall (which
are based on the number of common words between ma-
chine and human summary) and then calculate the F1 mea-
sure, defined by:

£l o 2 X precision X recall

"~ precision + recall

(2) Using a human to grade the machine results. A more
subjective method would be to appoint a human to grade the
machine summary, or to compare it with summaries from
other systems. For our summarizer, we used this method to
informally evaluate our results.

3.7 Results

In Appendix A, we present the summaries produced for three dif-
ferent products.

4 SENTIMENT CLASSIFICATION

We implemented a sentiment classification system to classify a re-
view as positive or negative, using only keyphrases from the re-
view as features. We experimented with two classification algo-
rithms: Gaussian Naive Bayes and Random Forest.

We present our method in the following sections. The document
pre-processing pipeline is described in Section 4.1. Feature extrac-
tion, involving scoring and selecting top-scoring sentiment words,
is described in Section 4.2. Finally, sentiment classification is per-
formed and the results are presented in Section 4.3.

4.1 Text Pre-processing
The text pre-processing pipeline consists of the following steps:

Case-folding

Removing numbers

Removing punctuation

Removing leading and trailing spaces
Tokenization

Lemmatization

Removing stop words

We used NLTK’s English stopwords list, but we handcrafted it to
remove descriptive product review terms such as:

e not, e.g. not good
e wouldn't, e.g. wouldn’t recommend
e didn't, e.g. didn’t like

4.2 Sentiment Word Extraction

Unigrams might not hold sufficiently meaningful information. We
assume that bigrams and trigrams convey more information. We
calculate bigram and trigram frequencies in the corpus using mod-
ules from the scikit-learn library.

After pre-processing and n-gram counting, the top 20 unigrams
and bigrams/trigrams in the corpus by term frequency are shown
in Figure 6. As we can see among the top 20 n-grams, a number of
bigrams convey meaningful sentiment information, such as highly
recommend, work well and really like.

Using the bigram and trigram frequencies obtained in the pre-
vious step, we calculate the tf-idf scores of these n-grams in the
review for which we want to classify. The tf-idf scores are then
sorted in descending order to obtained a rank list of sentiment
words. Our application allows a user to enter a particular review
index (from 0 to 190,918) and the number of phrases required.

The output of the top 5 phrases for the review of index 777 is
presented in Listing 2.

Listing 2: Sentiment Word Output for a Sample Review

GETTING 5 TOP KEYWORDS FOR REVIEW #777
PRODUCT ID: BQ@@652QNS
REVIEWER ID: A40P9CE7RCMUK

REVIEW TEXT:

Just recived my screen protectors and there amazing.
They came packaged very well. They come with a very
thivk cleaning cloth and some wet and dry cleaning
wipes. Once I put on protector on it was really
clear no problems at all great feeling to the
protector it was cut really well. Will defenetly
buy more when I need them wont be using another
protector but boxwave.. very satisfied (:

PROCESSED REVIEW TEXT:
recived screen protector amazing came packaged very well
come very thivk cleaning cloth wet dry cleaning
wipe put protector really clear problem great
feeling protector cut really well defenetly buy
need wont using another protector boxwave very
satisfied

TOP KEYWORDS AND TFIDF SCORES:
come very (0.505)
cleaning cloth (0.469)
very satisfied (0.443)
really well (0.418)
very well (0.304)

g s w N =

4.3 Sentiment Classification Results
For the classification task, we first map the ratings into three classes:

e Rating 1.0 to 2.0 : Negative class

e Rating 3.0 : Neutral class

e Rating 4.0 - 5.0 : Positive class
The distribution of the sentiment classes from the review dataset
is presented in Figure 7. Most of the ratings are in the positive
class. To train and test the model, we split the dataset into train-
ing and test sets in the ratio 80:20. We used tf-idf to rank and
select the top 2,000 unigrams and bigrams for training. We exper-
imented with two classifiers: Gaussian Naive Bayes and Random
Forest. Listing 3 and Listing 4 show the results.

Listing 3: Results for Gaussian Naive Bayes Classifier

Confusion Matrix:

[[3316 1179 401]
[1436 1957 805]
[4011 6627 18452]]

Result metrics:

precision recall fl-score support

Negative 0.38 0.68 0.49 4896
Neutral 0.20 Q.47 0.28 4198
Positive 0.94 0.63 0.76 29090
accuracy 0.62 38184
macro avg 0.51 0.59 0.51 38184
weighted avg 0.79 0.62 0.67 38184

Accuracy score: 0.6213335428451707

Listing 4: Results for Random Forest Classifier

Confusion Matrix:

[[1978 55 2863]
[420 201 3577]
[285 84 287211]

Result metrics:

precision recall fl-score support

Negative 0.74 0.40 0.52 4896
Neutral 0.59 0.05 0.09 4198
Positive 0.82 0.99 0.89 29090
accuracy 0.81 38184
macro avg 0.72 0.48 0.50 38184
weighted avg 0.78 0.81 0.76 38184

Accuracy score: 0.8092394720301697

-y
N
LA
(=]
o
o

100000
75000
50000
25000

0

Frequency

fit
ime
charger

not I
one [N
very
like - |
great [N
battery |G
screen [
use [N
work |
good [N
would
charge [N

phone
case
get
well
iphone

unigram

(a) Top 20 Unigrams

Frequency

20000
15000
10000
0
b oS S . P
SEFEES S8 PR FE F 885 ¢
Lo =8 © e & 2N
8205858828 5538 558882
55§ 58 S5 o566 & 5528 §° 1
=58 § 5§85 o5 § $ & <
Qq,, Q & g&’ 3 13
§ 5 °cr ° 2
@ @ § 5
<=
ngram

(b) Top 20 N-grams

Figure 6: Top 20 Unigrams and N-grams in the Corpus by Term Frequency

140000
120000
100000
80000
60000
40000
20000
0

Number of Reviews

Neutral Negative
Sentiment Class

Positive

Figure 7: Distribution of Sentiment Classes

4.4 Discussion

Random Forest achieved 80.9% accuracy on the test dataset, which
is about 18% better than Naive Bayes. We note that the training
data is heavily skewed towards the positive class. If there were
more examples of negative reviews, the model would be better at
identifying negative reviews. We also did not experiment with tun-
ing the hyperparameters of the classifiers.

5 CONCLUSION

We analyzed the Amazon product review dataset and presented
various review and rating distributions. We categorized the review-
ers in terms of their activity levels and found that more active re-
viewers are less likely to give low ratings than less active review-
ers. We tagged a few sentences to see if the NLTK POS tagger is able
to correctly tag the grammatically incorrect text. Except for a few
wrong tags, the tagging results are generally good.

We developed an extractive summarizer to extract informative
and meaningful keyphrases and sentences from all the reviews of a
product. The summarizer extracts keyphrases using a score based
on term frequency and review frequency. The summarizer extracts
sentences using a normalized score based on the tf-idf values of
unigrams, bigrams and trigrams in the sentence. Results evaluated

informally show that the summarizer is able to extract keyphrases
which describe the product being reviewed, and sentences which
convey information about the product and the reviewers’ senti-

ments.
Lastly, we implemented a sentiment classifier to classify a re-

view as positive or negative. We used keyphrases scored by tf-idf
as features for training. We experimented with the Gaussian Naive
Bayes and Random Forest algorithms. The Random Forest classifier
achieved an accuracy of 80.9%.

REFERENCES

[1] 2020. pandas - Python Data Analysis Library. Retrieved April 5, 2020 from
https://pandas.pydata.org/
[2] Ricardo Campos, Vitor Mangaravite, Arian Pasquali, Alipio Mario Jorge, Célia
Nunes, and Adam Jatowt. 2018. YAKE! collection-independent automatic key-
word extractor. In European Conference on Information Retrieval. Springer, 806—
810.
[3] NumPy developers. 2020. Matplotlib: Python plotting — Matplotlib 3.2.1 documen-
tation. Retrieved April 5, 2020 from https://numpy.org/
[4] Python Software Foundation. 2020. json — JSON encoder and decoder — Python
3.8.2 documentation. Retrieved April 5, 2020 from https://docs.python.org/3/
library/json.html
[5] Eric Firing Michael Droettboom John Hunter, Darren Dale and the Matplotlib de-
velopment team. 2020. Matplotlib: Python plotting — Matplotlib 3.2.1 documenta-
tion. Retrieved April 5, 2020 from https://matplotlib.org/
[6] Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In Pro-
ceedings of the 2004 conference on empirical methods in natural language process-
ing. 404-411.
[7] Eirini Papagiannopoulou and Grigorios Tsoumakas. 2020. A review of keyphrase
extraction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-
ery 10, 2 (2020), e1339.
[8] NLTK Project. 2020. Natural Language Toolkit — NLTK 3.5b1 documentation.
Retrieved April 5, 2020 from https://www.nltk.org/
[9] NLTK Project. 2020. nltk.stem package — NLTK 3.5b1 documentation. Re-
trieved April 5, 2020 from https://www.nltk.org/api/nltk.stem.html#nltk.stem.
porter.PorterStemmer
[10] NLTK Project. 2020. nltk.tag package, NLTK 3.5b1 documentation. Retrieved
April 5, 2020 from http://www.nltk.org/api/nltk.tag. html#module-nltk.tag

[11] Miguel Won, Bruno Martins, and Filipa Raimundo. 2019. Automatic extraction
of relevant keyphrases for the study of issue competition. Technical Report. Easy-
Chair.

https://pandas.pydata.org/
https://numpy.org/
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://matplotlib.org/
https://www.nltk.org/
https://www.nltk.org/api/nltk.stem.html#nltk.stem.porter.PorterStemmer
https://www.nltk.org/api/nltk.stem.html#nltk.stem.porter.PorterStemmer
http://www.nltk.org/api/nltk.tag.html#module-nltk.tag

A RESULTS FROM THE REVIEW
SUMMARIZER

A.1 Example 1

USER INPUT:
product_idx = 3000
num_sentences = 6
OUTPUT:

%%% PRODUCT REVIEW SUMMARIZER ##*xx*

Index: 3000
Product ID: BOQ56IKP10
Number of reviews: 16

Sample reviews:

Review 1:

I've said it in other reviews, these things can be
a crapshoot. I did alright with this one though.
No hot pixels or weird build quality. The screen
came well packaged and on-time. I'm very pleased
with this product and would recommend it to anyone
that's dropped their phone a little too hard!

Review 2:

Great fit, even though I immediately tore it up
upon installation (careful with those thin ribbon
cables!!) the part itself was a perfect fit.
Looked great, packaged well.

Review 3:

Cracked my screen and replaced it with this one
and now it is crystal clear, no more cracks in the
screen

SUMMARY KEY PHRASES:

dozen philips screws
good screen

new screen

one though

original screen
phone

previous screen
ridiculously small screws
screen

screen parts

thin ribbon cable
two dozen philips
wor

SUMMARY SENTENCES:

The repair kit contains the pentalobular driver
and other tools.

You really should have a good set of Jewelers
screwdrivers on hand, as there are a lot of
ridiculously small screws.

The iPhone 4 CDMA requires a Philips #00 driver
for all two dozen philips screws once inside the
case.

Great fit, even though I immediately tore it up
upon installation (careful with those thin ribbon
cables!!)

but it looks great.No cloudy images.Recognizes
touch 100\%No signs of LCD failingNot thicker or
slimmer than the original screen Not happy to say

the least.

Useful to fix broken device.

A.2 Example 2

USER INPUT:
product_idx = 4000
num_sentences =5
OUTPUT:

*%%% PRODUCT REVIEW SUMMARIZER *%x%

Index: 4000
Product ID: B@@580ILYU
Number of reviews: 12

Sample reviews:

Review 1:

This case is really good for this phone. It fits
the phone perfectly. Its not loose, and its easy
to put on and take off. It adds a little bit of
bulk but not too much. as far as the bulk it adds,
its between an otterbox commuter case and defender
series. I havent used the speck candyshell case,
so i cant really compare the ageis case to that.

Review 2:

This was my favorite case when I had my LG. It
protected well, but the covers for the charger
and headphone jack eventually came off.

Review 3:

8-30-11Just got this today and it's definitely a
quality case on first blush. Shipping was fast as
well. The hard plastic portion has a soft touch
feel to it so it's really very comfy in hand. It
does add some bulk, but that's fine because I find
that the thinness of the G2x does cause my hands
to cramp a bit when doing some gaming (gaming on
the g2x is the awesome). If you're looking for a

nice heavy duty case.. consider this one!

SUMMARY KEY PHRASES:

ageis case

awesome case

case

case fit

commuter case

hard plastic

hard plastic portion
heavy duty case

new phone

outer hard plastic
phone

phone multiple times
speck candyshell case

SUMMARY SENTENCES:

I havent used the speck candyshell case, so i cant
really compare the ageis case to that.

It has perfect cut outs as well.

The silicone attraches waaaayyyy too much pocket
lint2.

My phone was ran over by an suv and only damage
sustained was to the outer hard plastic of the

case!!!

This case has just the right amount of impact
absorption.

A.3 Example 3

USER INPUT:
product_idx = 7000
num_sentences = 4
OUTPUT:

*%%% PRODUCT REVIEW SUMMARIZER *%#*%

Index: 7000
Product ID: B0@5G4GBLW
Number of reviews: 7

Sample reviews:

Review 1:

good quality, quick ship great price. Perfect
fit did not have to trim corners. fits great
even with the case. No problems and easy to
install without bubbles.

Review 2:

The cover is good for the price. So far it
hasnt given me any problems. Will probably order
again. Maybe

Review 3:

I found these protectors to be inferior to the
ones I've used before for the following reasons:-
They scratch easily. The protector surface is
too sensitive, I get it scratched in the process
of application while using the credit card edge
to chase the bubbles out;- Partly for the above
reason they don't last long;- Get foggy overtime,
sometimes only a very short time after the
application.I still give them three stars because
of the price point and also because they do
perform the basic function they were designed for
- protect the screen.

SUMMARY KEY PHRASES:

credit card edge

first screen protector
great price

motorola photon perfect
perfect fit

photon perfect

price

protector

screen protector

ship great price

very short time

SUMMARY SENTENCES:

Nice cover, cheap price, easy to install, fit
the Motorola Photon perfect.

The protector surface is too sensitive, I get it
scratched in the process of application while
using the credit card edge to chase the bubbles
out;- Partly for the above reason they don't last
long;- Get foggy overtime, sometimes only a very
short time after the application.I still give them
three stars because of the price point and also
because they do perform the basic function they
were designed for - protect the screen.

Perfect fit did not have to trim corners.

good quality, quick ship great price.

	Abstract
	1 Introduction
	2 Dataset Analysis
	2.1 Data
	2.2 Python Libraries
	2.3 Review and Rating Distributions
	2.4 Sentence Segmentation
	2.5 Tokenization and Stemming
	2.6 POS Tagging

	3 Review Summarizer
	3.1 Objectives
	3.2 Previous Work
	3.3 Methodology
	3.4 Discussion: tf vs tf-idf
	3.5 Limitations of our Design
	3.6 Evaluation
	3.7 Results

	4 Sentiment Classification
	4.1 Text Pre-processing
	4.2 Sentiment Word Extraction
	4.3 Sentiment Classification Results
	4.4 Discussion

	5 Conclusion
	References
	A Results from the Review Summarizer
	A.1 Example 1
	A.2 Example 2
	A.3 Example 3

